Part Number Hot Search : 
PWR160 IC18F 10002 BTA08 B7838 STB5105 KS006 1N826UR
Product Description
Full Text Search
 

To Download V23990-P767-A-D3-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p767-a-pm flowpim 2 3rd 1200v/35a 3~rectifier,brc,inverter, ntc very compact housing, easy to route igbt4/ emcon4 technology for low saturation losses and improved emc behavior motor drives power generation v23990-p767-a-pm tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 80 t c =80c 80 t h =80c 100 t c =80c 151 maximum junction temperature t j max 150 c inverter igbt t h =80c 42 t c =80c 54 t h =80c 125 t c =80c 190 t sc t j 150c 10 s v cc v ge =15v 900 v 105 175 input rectifier diode a w t p =10ms t j =t j max t j =t j max t p limited by t j max maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings gate-emitter peak voltage a v c v a types i2t-value maximum ratings i fav a 2 s i fsm condition dc current forward current per diode surge forward current 700 p tot power dissipation per diode i 2 t 2450 t j =25c t j =t j max features flow2 housing target applications schematic collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c 1200 20 w a
v23990-p767-a-pm tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter fwd t h =80c 50 t c =80c 65 t h =80c 100 t c =80c 151 brake igbt t h =80c 35 t c =80c 40 t h =80c 112 t c =80c 170 t sc t j 150c 10 s v cc v ge =15v 900 v brake inverse diode t h =80c 15 t c =80c 20 t h =80c 50 t c =80c 75 brake fwd t h =80c 25 t c =80c 25 t h =80c 75 t c =80c 114 75 1200 75 1200 175 20 1200 t p limited by t j max t p limited by t j max 20 t j =t j max peak repetitive reverse voltage c maximum junction temperature t j max 175 w power dissipation per diode p tot dc forward current a t j =t j max t p limited by t j max a i f t j =t j max v rrm peak repetitive reverse voltage maximum junction temperature i frm t j max repetitive peak forward current t j =t j max i c p tot v ce i cpuls power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm t p limited by t j max w a w 1200 50 175 c v a v rrm peak repetitive reverse voltage repetitive peak forward current i frm a a t j =t j max v ge i f v c short circuit ratings dc collector current power dissipation per igbt collector-emitter break down voltage repetitive peak collector current gate-emitter peak voltage v a v w a maximum junction temperature t j max 175 v rrm dc forward current p tot maximum junction temperature t j max brake inverse diode t j =t j max c v copyright vincotech 2 revision: 3
v23990-p767-a-pm tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal properties insulation properties v is t=1min 4000 v dc min 12,7 mm min 12,7 mm clearance insulation voltage creepage distance t op operation temperature under switching condition -40+tjmax-25 c storage temperature t stg -40+125 c copyright vincotech 3 revision: 3
v23990-p767-a-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,1 1,7 tj=125c 1,05 tj=25c 0,89 tj=125c 0,77 tj=25c 0,004 tj=125c 0,006 tj=25c 0,05 tj=125c 1,1 thermal resistance chip to heatsink per chip r thjh 0,70 thermal resistance chip to case per chip r thjc 0,46 tj=25c 5 5,8 6,5 tj=150c tj=25c 1,87 2,3 tj=150c 2,28 tj=25c 0,015 tj=150c tj=25c 200 tj=150c tj=25c 108 tj=150c 109 tj=25c 18 tj=150c 24 tj=25c 220 tj=150c 286 tj=25c 73 tj=150c 112 tj=25c 2,07 tj=150c 3,22 tj=25c 1,78 tj=150c 2,93 thermal resistance chip to heatsink per chip r thjh 0,76 thermal resistance chip to case per chip r thjc 0,5 coupled thermal resistance transistor-transistor r thjht-t 0,11 coupled thermal resistance diode-transistor r thjhd-t 0,15 tj=25c 1,75 2,2 tj=150c 1,70 tj=25c 45,6 tj=150c 51,5 tj=25c 256 tj=150c 380 tj=25c 3,54 tj=150c 7,16 di(rec)max tj=25c 1714 /dt tj=150c 313 tj=25c 1,36 tj=150c 2,93 thermal resistance chip to heatsink per chip r thjh 0,95 thermal resistance chip to case per chip r thjc 0,63 coupled thermal resistance diode-diode r thjhd-d coupled thermal resistance transistor-diode r thjht-d 0,14 v k/w k/w a mws nc n a c v 155 200 115 1950 none tj=25c thermal grease thickness 50m = 0,61 w/mk t hermal grease thickness 50m = 0,61 w/mk r gon=16 c rss t r t d(off) turn-off energy loss per pulse inverter fwd q gate input capacitance t d(on) e off c ies 1500 50 600 25 0 600 35 0,0012 35 collector-emitter saturation voltage turn-on energy loss per pulse rise time gate-emitter leakage current integrated gate resistor inverter igbt gate emitter threshold voltage v ce(sat) i ces collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rgoff=16 15 r gon=16 ns t j=25c 15 f=1mhz reverse current thermal grease thickness 50m = 0,61 w/mk k /w v v ma i r conditions characteristic values forward voltage t hreshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode value c oss r gint i ges t f e on v ge(th) 35 960 output capacitance reverse transfer capacitance diode forward voltage gate charge reverse recovery time v f 1200 35 35 i rrm reverse recovered energy erec peak rate of fall of recovery current reverse recovered charge peak reverse recovery current q rr t rr vce=vge 0 15 20 0 15 ma v pf ns mws a/s copyright vincotech 4 revision: 3
v23990-p767-a-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max conditions characteristic values value tj=25c 5 5,8 6,5 tj=150c tj=25c 1,87 2,2 tj=150c 2,32 tj=25c 0,25 tj=150c tj=25c 200 tj=150c tj=25c 149 tj=150c 150 tj=25c 23 tj=150c 28 tj=25c 227 tj=150c 300 tj=25c 73,2 tj=150c 108 tj=25c 1,9 tj=150c 2,84 tj=25c 1,25 tj=150c 2,1 thermal resistance chip to heatsink per chip r thjh 0,85 thermal resistance chip to case per chip r thjc 0,56 tj=25c 1,1 1,69 2,1 tj=150c 1,63 thermal resistance chip to heatsink per chip r thjh 1,92 k/w thermal resistance chip to case per chip r thjc 1,27 k/w tj=25c 1,93 2,2 tj=150c 1,91 tj=25c 10 tj=150c tj=25c 21,57 tj=150c 24,85 tj=25c 318 tj=150c 510 tj=25c 2,41 tj=150c 4,97 di(rec)max tj=25c 382 /dt tj=150c 76 tj=25c 2,41 tj=150c 4,97 thermal resistance chip to heatsink per chip r thjh 1,26 thermal resistance chip to case per chip r thjc 0,83 110 tc=100c tj=25c 20,9 960 25 10 600 600 25 25 15 25 1200 600 rgon=32 f=1mhz r everse recovery energy t rr thermal grease thickness 50m = 0,61 w/mk q rr e rec reverse recovery time peak rate of fall of recovery current reverse recovered charge thermistor b rake fwd diode forward voltage r everse leakage current v f i r 15 tj=25c 0 tj=25c thermal grease thickness 50m = 0,61 w/mk 1 5 1393 none ma na v v 0 20 rgon=32 rgoff=32 15 brake igbt vce=vge c ollector-emitter saturation voltage v ce(sat) gate emitter threshold voltage 15 r ated resistance r 25 deviation of r100 d r/r r100=1486.1 tol. 3% t ol. 5% tj=25c tj=25c %/k 25 0,00085 b-value b (25/100) k power dissipation given epcos-typ p mw a n s a collector-emitter cut-off incl diode v ge(th) turn-on energy loss per pulse turn-on delay time t d(on) thermal grease thickness 50m = 0,61 w/mk c oss t d(off) t f v 143 k/w nc peak reverse recovery current i rrm 0 diode forward voltage v f reverse transfer capacitance q gate brake inverse diode gate charge t urn-off delay time t r gate-emitter leakage current r gint integrated gate resistor i ces i ges output capacitance c rss c ies e off e on fall time turn-off energy loss per pulse input capacitance rise time 82 c k a/s 2 3,1 mws 210 4000 k/w 2,9 22 ns 25 v pf mws copyright vincotech 5 revision: 3
v23990-p767-a-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c vge from 7 v to 17 v in steps of 1 v vge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fwd typical transfer characteristics t ypical diode forward current as ic = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 20 40 60 80 100 120 0 1 2 3 4 5 v ce (v) ic (a) 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 v ge (v) i c (a) tj = 25c tj = tj max -25c 0 20 40 60 80 100 120 0 0,5 1 1,5 2 2,5 3v f (v) i f (a) tj = 25c tj = tj max -25c 0 20 40 60 80 100 120 0 1 2 3 4 5 v ce (v) ic (a) copyright vincotech 6 revision: 3
v23990-p767-a-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 36 a r goff = 16 figure 7 o utput inverter igbt figure 8 output inverter igbt typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) erec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 36 a output inverter e on e off e on: e off 0 1 2 3 4 5 6 7 0 10 20 30 40 50 60 70 i c (a) e (mws) e off e on e on e off 0 2 4 6 8 0 15 30 45 60 75 r g ( w ) e (mws) e rec e rec 0 1 2 3 4 5 0 15 30 45 60 75 i c (a) e (mws) e rec e rec 0 1 2 3 4 5 0 15 30 45 60 75 r g ( w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 7 r evision: 3
v23990-p767-a-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 36 a r goff = 16 figure 11 o utput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 36 a r gon = 16 v ge = 15 v output inverter t doff t f t don t r 0,001 0,01 0,1 1 0 10 20 30 40 50 60 70 ic (a) t ( m s) t rr t rr 0 0,2 0,4 0,6 0,8 0 15 30 45 60 75 r gon ( w ww w ) t rr ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 10 20 30 40 50 60 70 r g ( w ww w ) t ( m s) t rr t rr 0 0,1 0,2 0,3 0,4 0,5 0,6 0 10 20 30 40 50 60 70 i c (a) t rr ( m s) 25 / 150 25 / 150 copyright vincotech 8 r evision: 3
v23990-p767-a-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(ic) q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 36 a r gon = 16 v ge = 15 v figure 15 o utput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(ic) i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 36 a r gon = 16 v ge = 15 v output inverter i rrm i rrm 0 30 60 90 120 150 0 15 30 45 60 75 r gon ( w ww w ) irr m (a) q rr q rr 0 3 6 9 0 15 30 45 60 75 r gon ( w ) q rr ( m c) i rrm i rrm 0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 i c (a) irr m (a) q rr q rr 0 3 6 9 12 0 15 30 45 60 75 i c (a) q rr ( m c) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 9 r evision: 3
v23990-p767-a-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di0/dt,direc/dt = f(ic) di0/dt,direc/dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 36 a r gon = 16 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(tp) z thjh = f(tp) at at d = tp / t d = tp / t r thjh = 0,759 k/w r thjh = 0,87 k/w r thjh = 0,95 k/w r thjh = 0,95 k/w single device heated ali devices heated single device heated ali devices heated igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) r (c/w) tau (s) r (c/w) 0,07 2,2e+00 0,18 0,02 9,5e+00 0,02 0,13 2,9e-01 0,13 0,08 1,3e+00 0,08 0,32 5,5e-02 0,32 0,18 1,5e-01 0,18 0,16 1,5e-02 0,16 0,42 3,1e-02 0,42 0,05 1,3e-03 0,05 0,16 7,1e-03 0,16 0,04 2,2e-04 0,04 0,10 6,2e-04 0,10 output inverter t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt di rec /dt 0 1500 3000 4500 6000 7500 9000 10500 12000 0 15 30 45 60 75 r gon ( w ) di rec / dt (a/ m s) di 0 /dt di rec /dt 0 1000 2000 3000 4000 0 10 20 30 40 50 60 70 i c (a) di rec / dt (a/ m s) 25 / 150 25 / 150 copyright vincotech 1 0 revision: 3
v23990-p767-a-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c single heating t j = 175 c overall heating v ge = 15 v figure 23 o utput inverter fwd figure 24 output inverter fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 50 100 150 200 250 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) i c (a) 0 50 100 150 200 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 11 revision: 3
v23990-p767-a-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(qg) at at d = single pulse i c = 36 a th = 80 oc v ge = 15 v tj = t jmax oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100u s 1ms 10ms 100ms dc 10 0 10 3 10us 0 2,5 5 7,5 10 12,5 15 17,5 0 20 40 60 80 100 120 140 160 180 200 qg (nc) v ge (v) 240v 960v copyright vincotech 12 revision: 3
v23990-p767-a-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 151 c vge from 7 v to 17 v in steps of 1 v vge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 20 40 60 80 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 0 2 4 6 8 10 12 v ge (v) i c (a) tj = 25c tj = tj max -25c 0 15 30 45 60 75 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) tj = 25c tj = t jmax -25c 0 20 40 60 80 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 3
v23990-p767-a-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a r goff = 32 figure 7 b rake igbt figure 8 brake igbt typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a brake e rec e rec 0 0,5 1 1,5 2 2,5 3 0 10 20 30 40 50 i c (a) e (mws) e rec e rec 0 0,5 1 1,5 2 2,5 0 20 40 60 80 100 120 140 r g ( w ww w ) e (mws) e off e on e on e off 0 1 2 3 4 5 6 7 0 10 20 30 40 50 i c (a) e (mws) e off e on e on e off 0 1 2 3 4 5 6 7 0 20 40 60 80 100 120 140 r g ( w ww w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 1 4 revision: 3
v23990-p767-a-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32,015 i c = 25 a r goff = 32,015 figure 11 b rake igbt figure 12 brake igbt igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0,85 k/w r thjh = 1,26 k/w brake t doff t f t don t r 0,001 0,01 0,1 1 0 10 20 30 40 50 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 20 40 60 80 100 120 140 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 copyright vincotech 15 revision: 3
v23990-p767-a-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fwd figure 16 brake fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 50 100 150 200 250 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 th ( o c) i c (a) 0 25 50 75 100 125 150 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 3
v23990-p767-a-pm figure 1 brake inverse diode figure 2 brake inverse diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 1,92 k/w figure 3 b rake inverse diode figure 4 brake inverse diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake inverse diode 0 5 10 15 20 25 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) tj = 25c tj = tj max -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 2 4 6 8 10 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 17 revision: 3
v23990-p767-a-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 0,70 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 40 80 120 160 200 0 0,5 1 1,5 2 v f (v) i f (a) tj = 25c tj = tjmax-25c t p (s) z thjc (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 50 100 150 200 250 0 30 60 90 120 150 th ( o c) p tot (w) 0 20 40 60 80 0 30 60 90 120 150 th ( o c) i f (a) copyright vincotech 18 revision: 3
v23990-p767-a-pm figure 1 thermistor typical ntc characteristic a s a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/  copyright vincotech 19 revision: 3
v23990-p767-a-pm t j 125 c r gon 16  r goff 16  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of tdoff, teoff turn-on switching waveforms & definition of tdon, teon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t doff = 0,28  s t don = 0,11  s t eoff = 0,55  s t eon = 0,3185  s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t f = 0,11  s t r = 0,023  s switching definitions output inverter general conditions = = = i c 1% u ce 90% u ge 90% -40 -20 0 20 40 60 80 100 120 140 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 time (s) % t doff t eoff uce ic u ge ic 10% uge 10% t don u ce3% -40 0 40 80 120 160 200 240 280 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 5 time(s) % ic uce t eon uge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 1,2 1,25 1,3 1,35 1,4 1,45 1,5 1,55 time (s) % uce ic t f i c10% ic90% -20 20 60 100 140 180 220 260 4,55 4,575 4,6 4,625 4,65 4,675 4,7 time(s) % tr uce ic copyright vincotech 20 revision: 3
v23990-p767-a-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 21,0 kw p on (100%) = 21,0 kw e off (100%) = 2,70 mj e on (100%) = 2,95 mj t eoff = 0,55 s t eon = 0,3185 s figure 7 o utput inverter fwd turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 35 a i rrm (100%) = -51 a t rr = 0,351 s switching definitions output inverter ic 1% uge90% -20 0 20 40 60 80 100 120 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 time (s) % poff eoff teoff u ce3% u ge10% -20 20 60 100 140 180 220 4,4 4,5 4,6 4,7 4,8 4,9 5 time(s) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% trr -160 -120 -80 -40 0 40 80 120 4,3 4,5 4,7 4,9 5,1 5,3 time(s) % id ud fitted copyright vincotech 21 revision: 3
v23990-p767-a-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 35 a p rec (100%) = 21,0 kw q rr (100%) = 6,5 c e rec (100%) = 2,64 mj t qint = 0,75 s t erec = 0,75 s switching definitions output inverter t qrr -200 -150 -100 -50 0 50 100 150 4,4 4,6 4,8 5 5,2 5,4 5,6 time(s) % id q rr -20 0 20 40 60 80 100 120 4,4 4,6 4,8 5 5,2 5,4 5,6 time(s) % p rec erec te rec copyright vincotech 22 revision: 3
v23990-p767-a-pm in datamatrix as in packaging barcode as without thermal paste 12mm housing p767-a p767-a pin x y pin x y 1 dc- 71,2 0 33 g 10,6 37,2 2 dc- 68,7 0 34 g 18,45 37,2 3 dc- 66,2 0 35 e 21,25 37,2 4 dc+ 63,7 0 36 v 24,05 37,2 5 dc+ 55,95 0 37 v 26,55 37,2 6 dc+ 53,45 0 38 v 29,05 37,2 7 dc+ 55,95 2,8 39 w 36,1 37,2 8 dc+ 53,45 2,8 40 w 38,6 37,2 9 dc+ 48,4 0 41 w 41,1 37,2 10 dc+ 45,9 0 42 e 43,9 37,2 11 e 38,9 0 43 g 46,7 37,2 12 dc- 36,1 0 44 l1 53,7 37,2 13 g 38,9 2,8 45 l1 56,2 37,2 14 dc- 36,1 2,8 46 l1 58,7 37,2 15 dc- 31,3 0 47 l2 71,2 37,2 16 e 28,5 0 48 l2 71,2 34,7 17 dc- 31,3 2,8 49 l2 71,2 32,2 18 g 28,5 2,8 50 l3 71,2 25,2 19 r2 19,3 0 51 l3 71,2 22,7 20 r1 19,3 2,8 52 l3 71,2 20,2 21 dc+ 12,3 0 53 brc 71,2 12,8 22 dc+ 9,8 0 54 brc 68,7 12,8 23 dc+ 12,3 2,8 55 brg 71,2 5,6 24 dc+ 9,8 2,8 56 bre 71,2 2,8 25 e 2,8 0 26 dc- 0 0 27 g 2,8 2,8 28 dc- 0 2,8 29 u 0 37,2 30 u 2,5 37,2 31 u 5 37,2 32 e 7,8 37,2 pin table v23990-p767-a-pm pinout ordering code & marking ordering code and marking - outline - pinout version outline ordering code copyright vincotech 23 revision: 3
v23990-p767-a-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. copyright vincotech 24 revision: 3


▲Up To Search▲   

 
Price & Availability of V23990-P767-A-D3-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X